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In this paper we give a new scheme for deriving a non-linear system, satisfied by
the three-term recurrence coefficients of semi-classical orthogonal Polynomials, this
non-linear system is labelled "Laguerre-Freud's equations." Here we do not deal
with the numerical aspect of the question (stability, asymptotic, ... ). Our purpose is
to take due advantage of linear functionals formalism and to show that given a
semi-classical linear functional, i.e., given two polynomials, we are able to provide
the Laguerre-Freud's equations. The way of obtaining these equations is put in a
recursive form appropriate for computer algebra calculation, especially when the
degrees of the two given polynomials are large. We illustrate our process by several
examples and we point out two cases where the solutions to Laguerre-Freud's
equations are not unique. © 1994 Academic Press, Inc.

I. INTRODUCTION

Let {Pn}n;.o be a sequence of monic Orthogonal Polynomials (OP) with
respect to the linear functional fi', and therefore {Pn} n;'° satisfies a three­
term recurrence relation, i.e., [9],

Pn+2(x) = (x -!3n+ d Pn+ I(X) - Yn+ I Pn(x)

P I (X)=X-!3o,
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where f3n' I'n+ lEI[, I'n+ 1 #0, n ~O f3n and 'In are given by

R = <if, xP~(x»
f'n <!£,P~>'

n~O (2)

with the convention Yo = <if, P6), in order that <if, P~>= n~~ 0 }'j for all
n~O.

In numerous applications [6, 11, 13, 12, 28] one needs information
about the zeros of {Pn}n;;.O' The usual way of tackling this question is to
use Sturm-type analysis applied to the differential equation satisfied by the
corresponding polynomials. However, orthogonal polynomials generated
by the three-term recurrence relation do not necessarily satisfy any simple
differential equation, and if they do [4,27] then the nature of the differen­
tial equation is not always appropriate for Sturm-type analysis. Thus the
suitable approach is to treat the zeros of orthogonal polynomials as the
eigenvalues of truncated Jacobi matrices; according to this point of view
the recurrence coefficients f3 n andyn are essential ingredients.

Here we present a straightforward way which allows us to establish the
non-linear system satisfied by f3n and 'In' requiring only the assumption
that if is semi-classical [15, 24] i.e.,

l/Jif +D[tPif] = 0,

where

<l/Jif, P> := <if, l/JP>

<D[tPif], P> := - <tPif, D[P] >

= - <tPif, P' >

(3 )

P:= P(x) an arbitrary polynomial, tP and l/J polynomials in x

The integer s = max {degree l/J - 1, degree tP - 2} is the class of if. If if is
represented by a positive weight function, say p over the interval I, i.e.,

<if, P> := {p(x) P(x) dx,

then (3) is equivalent to [3],

(l/J + tP')p + tPp' = 0

and tP(x)p(x)P(X)ll=O for any arbitrary polynomialP.
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To recover Hendriksen and van Rossum notation [15J, just set

A=l/J+¢/

B=¢J.
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The non-linear system will be labelled Laguerre-Freud's equations, we
borrowed this denomination from A. Magnus [22, 23 J, who dealt with the
problem in the case of an exponential weight. We will see later that our
approach, with the suitable substitutions of the parameters, agrees with
Magnus' results.

A number of problems in physical science [1, 8, 10, 16-18, 21, 29-31]
and in applied mathematics deal with semi-classical polynomials and par­
ticularly with the class s = 1 [2, 3]. As an illustration of our process we
write the explicit Laguerre-Freud's equations in the case where 51' is semi­
classical of class one, as well as when 51' is represented by the weight
function p(x)=exp{ -Q(x)} over the real line, with

2m
Q(X) = I qk X\

k~O

At the end, we show on an example how the complexity of the non-linear
system increases by writing the Laguerre-Freud's equations for

p,(x)=e- X2

P2(X) = e- x2

P3(X) = e- x1

P3(X) = e- x2

P4(X) = e- x2m

P4(x)=e- x2m

which satisfy, respectively,

on ] - 00, + 00 [ (Hermite OP)

on [0, +oo[ (MaxwellOP)

on [0, 1] (Truncated Maxwell OP)

on ]-oo,O]U[I,+oo[

on [-c, c]

on ] - 00, - c] U[c, + 00 [

(4 )

(5)

(6)

(7)

(8)

(9)

2X5l'1 + D[5I')] = 0

(2x2- 1)51'2 + D[X5l'2] = 0

{
(2x 3- 2x2- 2x + 1) 51'3 + D[x(x - 1)51'3] = 0

(2x3 - 2x2- 2x + 1) fl'3 + D[x(x - 1)fl'3] = 0

{
2(mx2m + I _mC2X2m - 1-x)~ + D[(x2- C2)~] = 0
2(mx2m + 1_ mC2X2m - 1

- x)~ + D[(x2- C2)~] = O.

(10)

(11 )

(12)

(13)

(14)

(15 )

The last four linear functionals exemplify the situation where the
Laguerre-Freud's equations have more than one solution.
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Equations (10)-(15) are obtained via the recurrence relation satisfied by
the moments, for instance, let us take the Maxwell case:

the moments satisfy

2J1n+2-(n+l)J1n=0, n~O,

which may be written as

(2J1n + 2 - J1n) - nJ1n = 0,

2 (.<t;, Xn+ 2 >- (.<t;, Xn>- n(.<t;, Xn>= 0,

«(2x2- 1).<t;, Xn>- n(x.!l;, Xn- I >= 0,

«(2x2- 1)2'2' Xn>- (X2'2' (Xn)' >= 0,

Finally we obtain

n~O,

n~O

n~O

n~O.

hence Eq. (11).
As we said in the abstract, here we do not deal with the numerical aspect

of Laguerre-Freud's equations. We conclude this introduction with a few
words about the efficiency of Laguerre-Freud's equations. In principle the
first 2n moment J1k = (2', xk>, k = 0,1, ..., 2n -1 determine uniquely the 2n
recurrence coefficients Ih and "h via Eq. (2), for this we have to perform cn
operations (c constant) to evaluate the numerator and the denominator of
the fractions in (2). Further we need the intermediate polynomials; that is
to say that we have to perform c(l + 2 + ... + n) "" cn 2/2 operations to
reach the level n. The modified Chebyshev algorithm requires O(n2

) opera­
tions [13], but Laguerre-Freud's equations request O(n) operations for the
computation of (3's and y's of level n.

II. PRELIMINARY RESULTS

In the sequel we need the following results.

A. Iteration of the Three-Term Recurrence Relation

If we start with the three-term recurrence relation and we repeat the
process we obtain

n+k
xkPn(x)= 2: C;'n P/ x ),

j~n-k

(16)



LAGUERRE-FREUD'S EQUAnONS 355

with the convention that polynomials with negative subscript are zero. It is
easy to see that

LEMMA 2.1. The coefficients C~ n satisfy

(C~ n == 0 for j < 0)
k

Ck + 1
- Ck

- Iln-k-I,n-Yn-k n-k.n- Yn-j
j~O

C k + I P C k C k
n-k.n = n-k n-k.n + Yn-k + I n-k + l. n

C
k + I - Ck + P C

k +" C k
j,n - j-I,n j j,n Yj+l j+l,n'

C k + 1 - Ck P C k
n+k,n - n+k-l,n + n+k n+k,n

C~ ~ k+I, n = C~ + k, n = 1.

n-k+l~j~n+k-l

Starting with the vector VI = (C~ _ I, n' C~, n' C~+ I. n)T a matrix version of
the above relations may be written, which permits the evaluation of the
vector

V - (Ck + I . C k + I . Ck + I , Ck + I ) T
k+l- n-k-l.n' n-k,n"" j.n "0' n+k+I,n

as
k-I

V k + 1 = TI Ak_jV 1

j=O (17)

C~,n=Pn (n~O), C~+I,n= 1 (n~O),

where the (2k + 3) x (2k + 1) matrix A k is given by:

Yn-k 0

Pn-k Yn-k + 1

Pn-k+1

Ak =

0 0

0 0

o 0

o
Pn+k-l Yn+k

1 Pn+k

o

(18)

This process, is of course equivalent to a more familiar one involving the
tridiagonal Jacobi matrix associated to the recurrence relation (1) [22].

B. Turan Determinant

Let ~+ 1= P nPn+2 - P~+ 1 denote the Turan determinant, which satisfies
the recurrence

(n ~ 1). (19)
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It is an easy task to show

LEMMA 2.2. The Turim determinants are given by

n n n-l-h

~+ 1 = - fl Yj+ L fl Yn_jF(h), n ~ 0,
j=O h=O i~O

where

In the sequel we will assume that empty products are equal to unity and
empty sums are equal to zero.

III. LAGUERRE-FREUD'S EQUATIONS

A. Algorithm

Let us start with the functional equation for the semi-classical form !£'
(Eq. (3)), where the polynomials c,6(x) and t/F(x) are written as

r

c,6(x) = L CiXi, t~O, (20)
i=O

p

t/F(x) = L aix
j
, p~1. (21)

j=O

The null form given in Eq. (3) acting on P~ and Pn+ 1 Pn gives the two
relations,

(t/F!£', P~) = 2 (c,6!t', PnP~)

(l/J!t', Pn+ 1 Pn) = (¢J!t', (PnPn+I)')'

(22)

(23)

Equations (22) and (23) will provide the Laguerre-Freud's equations for
the linear functional !t'. After expanding c,6 and l/J according to (20) and
(21), the last identities become

{

ito ai(xi!t', P~) = 2 ito c; (Xi!£" PnP~) (24)

p I

i~O ai(xj!t', Pn+IPn) = i~O c;(x
i
!£" (PnPn+I)')· (25)
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The recurrence coefficients /1" and {" already contained in these 2 relations
replacing, in a clever way, xP" by P"+l +/1"P"+{,,P,,-1 and evaluating
the four "integrals":

Lo," = (n + 1)1o,".

Jk,,,:= <xkff, P"P~),

Kk ,,,:= <xk ff, P,,+ iP,,),

Lk,,,:= <xkff, (P,,+I P,,)'),

"
1o,,, = I1 (j

j=O

Jo,,, =0,

Ko,,, =0,

(26)

(27)

(28)

(29)

Using the orthogonality of the sequence {P,,},,;:,o with respect to ff and
Lemma 2,1, we have

LEMMA 3,1. The "integrals" Ik ,,, and Kk ,,, are given by

Ik ,,, = C~, "1o,,,

K k ,,, = C~+ I, ,,1o, ,,+ 1 = {,,+ 1c~+ I, ,,1o, no

Again, using the orthogonality of {P,,},,;:, 0 with respect to ff, we obtain

LEMMA 3.2. The "integrals" J k ,,, and L k ,,, satisfy mixed recurrences in k
for a fixed n,

2Jk+1,,, = 2/1"Jk, ,, + Lk,,, + {"Lk,"-l -h,,,

L k+ 1," = 2{,,+ 1h,,, + /1" + 1Lk,,, - Kk,,, + <xkff, (P"P,,+ 2)')'

The evaluation of <xkff, (P"P"+2)') is controlled via the Tunlll deter­
minant; indeed we have

(30)

Thus

According to Lemma 2.2 we have

n n-l-h

<xkff,ff~+I)= I I1 (,,~j{(/1h-/1h+d<Xk.p,(PhPh+l»)')
h~O j~O
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n n-I-h
<Xkfi',:T~+I)=L n Yn-j{({3h-{3h+l) Lk,h+2(Yh-Yh+d Jk,h}'

h=O j~O

We may translate the Lemma 3.2 to a matrix version, namely,

[
2Jk + I, nJ [fin
L k+ I.n = Yn+ 1

With obvious notation we have

In other words

According to Lemma 2.1, the results of Lemmas 3.1 and 3.2 mean that if
we know the values of the four "integrals" at level k, we are able to com­
pute them at level k + 1. As stated by (24) and (25) we need only to
perform the recurrences satisfied by I, J, K, L for k~max{p, t}. At this
stage we have all the ingredients involved in Eqs. (24) and (25).

B. Laguerre-Freud's Equations for Semi-Classical Orthogonal Polynomials
of Class One

Let us write the "integrals" which are involved in the case where fi' is
semi-classical of class one [2, 3], i,e"

According to Eqs. (24) and (25) we need

h,n,Kk,n,O~k~2, n~O

h,n,Lk,n,O~k~3, n~O

which are computed via the previous algorithm

(33 )
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Jo,,,= (fe, P"P~>=0
J1,,,=nlo,,,

J2,,,=[(n-1)P"+k~oPkJlo,,,, n~O

J3, " = { n(Y" + 1 + Y,,) +P" [ (n - 1)P" + ktoP k ]

+2 :~: h+ :~~PZ}Io,,,n~o
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(34)

{

Ko,,,= <g>,P"+lP,,>=O

K I, " = Y" + I/O, ",

K2,"=Y"+l(P"+l +P")[o,,,,
n~O

n~O

(35)

Lo,,,=(n+ 1)/0,,,

Ll," = (f Pk) 10 ,,,
k~O

L2,,,=[(2n+l)Y"+1+2ktlYk+k~oPzJ[o,,,, n~O (36)

L 3,,, = {Y,,+ I [(2n + 1) P,,+ 1+ 2np,,] + 3 kt Yk(Pk + Pk- I) + k~O Pk

+2Y"+1 ktOPk} 10,,,, n~O,

Equations (24) and (25) can be written respectively as

(37)

Taking into account the different values of h,,,, Jk,,,, Kk,n, and Lk,n given
above, we obtain the Laguerre-Freud's equations for the class 1,

(39)
n -1 n-t

(a2- 2nC3)(Yn+l+Yn)=4c3 L Yk+ 2 L 8p}(Pd-t/J(Pn) n~1
k~ 1 k~O
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[a2- (2n + 1)c3 ] Yn+ ,13n+'

= k~O !/J(13k) + C3 [2Yn+I (n13n+ ktO 13k) + 3 kt yd13k + 13k + dJ

where

n ~O, (40)

To check the validity of Eqs. (39) and (40), we set, respectively,

C3 =C2 =0, cl=1, co=O,

a2=0, a 1 = -2a, ao=-2

a2 = 0, a I = 1, ao = - IX - 1

a2=0, a 1 =2, ao=O.

Then we recover the Jacobi, Bessel, Laguerre, and Hermite recurrence
coefficients respectively [5].

C. Generalized Exponential Weight

Let !f be represented by the weight function

with

p(x) = exp{ -Q(x)}

2m

Q(X) = L qkXk,
k~O

over the real line,

then the moments J.ln ;= <!f, x n) satisfy the following recurrence relations

2m

I kqkJ.ln+k ,-nJ.ln_l=O
k~l

for n ~ O. (41 )

In obedience to (41), the linear functional !f satisfies

Q'(x)!f + D[!f] =O. (42)
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In this case Eqs. (24) and (25) give
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2m

L kqk(Xk- 12, P~) = 2(2, PnP~)=0 (43)
k~l

2m

L kqk(Xk- 12, Pn+1Pn) = (2, (Pn+IPn)')
k=l

=(n+l)(2,P~)

which may be written as

(44)

2m

I kqk1k_l,n=0,
k ~ 1

or, according to Lemma 3.1

Zm

L: kqk Kk_l.n=(n+l)Io,n
k~l

2m

I kqkC~.~,l = 0
k=l

Zm

}'n+I L kqkC~+~.n=n+ 1.
k~l

(45)

(46)

As we can see the Laguerre-Freud's equations are obtained by a simple
computation of two components of the vectors Vk for 1~ k ~ 2m - 1.

For clarity's sake, let m = 2. We have to compute C~, n and C~ + I, n for
1~ k ~ 3. In the light of Lemma 2.1 or Eq. (17), we have

C;" n= f3n (n ~ 0), C~, n= Yn + f3~ + }'n + 1 (n ~ 1)

C~. n= Yn(13 n- I+ {3n) + {3n(y n+ f3~ + t' n+ 1)

+Yn+l({3n+{3n+d n~l) (47)

C~, 0= f3~ +Y, C~. 0= {30({3~ + yd + Yl (130 + f3d

C~+l,n=1 (n~O), C~+l,n=f3n+{3n+l (n~O)

C~+l,n=Yn+{3n({3n+{3n+d+}'n+l+f3~+1+Yn+2 (n~l) (48)

cto= {30({30 + f31) + Yl + f3f + i'2'

Therefore the Laguerre-Freud's equations take the following forms

4q4 (ynf3 n- I + 2ynf3 n+ f3 ~ + 2yn+ I f3 n+ Yn+ 1 13n+ 1)

+3q3(Yn+f3~+Yn+I)+2qzf3n+ql=0 (n~l) (49)

4q4(f3~ + 2"ltf3o + YI f31 + 3q3(f3~ + I'd +2qzf3o + ql = 0

Yn+ I {4q4(Yn + f3~ + f3nf3n+ 1 + Yn+ 1 + f3~+ 1 + Yn+2)
+3q3(f3n+f3n+l)+2q2}=n+l (n~l) (50)

YJ [4q4 (f3~ + f3of31 +YI + f3f + Yz) + 3q3({3o + f3 d + 2qz] = 1.
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These two equations agree with the ones of Magnus (Eqs. (1.22) and (1.21)
respectively in [23 J), of course, with the suitable change of notations

'n-+a~, and for 0~k~4.

Moreover, if we set qo=ql =q2=0, and q4= 1, we note that p(x)=
exp{ - x 4

} is an even function on IR and the corresponding orthogonal
polynomials constitute a symmetric sequence, that is to say that Pn = °for
n ~ 0. Then Eq. (49) is a trivial identity. Eq. (50) is reduced to

4,d,I+,2)=1 (n=O).

(51)

This last equation has been the object of considerable study [22, 7, 14, 19,
25, 26, 32].

IV. ApPLICAnONS

In the sequel, we will show the increasing complexity of the relations
satisfied by Pn and 'n with respect to changes in the weight support. We
start with the Hermite weight function and successively truncate the
support of this function in order to generate new orthogonal sequences.
These new sequences still remain semi-classical.

1. Hermite Case

~(x) = 1, tjJ(x) = 2x.

2'; satisfies 2X!t'1 +D[!t'tJ =0. Equations (39) and (40) are equivalent to

2Po = 0

2Pn = 0, n~1

1-2'1 =0

n + 1 - 2'1n+ I = 0, n~O

which lead to

Pn = 0, n~O

Yn+ I = (n + 1)/2, n~O.
(52)

2. Maxwell Case

!t'is the Maxwell's linear functional [29,30], which satisfies (11), i.e.,
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According to {(39), (40)} we have

2YI = l-2f3~

2Yn+ 1= 2n - 2Yn - (2P~-1), n~l
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(53)

n

2Yn+IPn+l= L Pk- 2Yn+lf3n' n~O
k=O

with 130 = ljfi·
Equations (53) may be written as

2YI = 1- 2f3~

2Yn+l =2n+ I-2Yn-2f3~, n~O

2Yn+lfJn+1 = k~JhtO fJh-(2k+ l-2Pk)Pk} n~O.

Equation (II) may be written in the following form

or

where (jc is the Dirac mass at the point c. The left hand-side of the previous
equation is the same as the functional equation satisfied by the Hermite
linear functional. We will say that Maxwell linear functional is the
truncated Hermite linear functional.

3. Truncated Maxwell Case

23 is the linear functional, defined by (12), i.e.,

(2x) - 2x2
- 2x + 1)2'3 + D[x(x - 1)2')] = 0,

(x - I){ (2x2
- 1)2'3 + D[x2')]} = 0

or

As we can see the left side of this equation is the same as the functional
equation satisfied by Maxwell linear functional and the right side is a Dirac
mass, then 2') can be viewed as the truncated Maxwell's linear functional.

Application of (24) and (25) give

21). n- 212• n- 211• n+ 10• n= 2(J2, n- J I.n)

2K3• n- 2K2,n - 2KI.n+ Ko,n = L 2,n - LI,n'

(54)

(55)
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First we have to compute 13." and K 3.",

13.,,= [Y,,+I(fJ,,+1 +2f3")+y,,(2f3ll+f3/1-tl+f3~]IO.,,,

13,0= [1'\(131 +2f3o)+f3~]Io,0

K 3. " = I'" + I ( I'" + 2 + 1'" + I + 1'" + 13~ + I + 13" + I 13/1 + 13;')10.",

K3.O =YI(Y2+YI +f3i+f3lf3o+f3~)/o.o·

Let us substitute the previous expressions in (54) and (55), we obtain

21'/1 + 1(13" + \ + 213" - 1) = 2 [(n - 1)13" + kt0 13k - y"

x(213" + 13,,- tl- nJ -1jJ(P/I)'

" "
21',,+11',,+2= I <{l(Pd+2 I Yk

k=O k~l

(56)

(57)

(58)

+ 1',,+ I [2n + 1- fJ pn ljJ(f3/1+ d
- 2(1'" + 1 + 1',,)],

2}'I(f3l +2130- 1)= -1jJ(f3o)

21' I I' 2 = <{l( Po) + 1'1 [l - fJ Po IjJ (13 d - 21' I ].

n~l

(59)

4. Truncated Maxwell's Companion Case

!l; is represen ted by the weight function j5 3 (x) = e - x
2

over ] - 00, 0]
U[l,oo[. It is easy to see that the moments JI,,:=J~ocx"e-x2dx+
JrCD x"e - x' dx satisfy the following recurrence relation

2J1"+3 - 2J1"+2 - 2J1,,+ 1+ JI" -n(f.l,,+ 1 - f.l/l) = O. (60)

Thus the functional equation satisfied by !l; reads as (2x3- 2x2­
2x + 1)!l; + D[x(x - 1)!l;] = O. We have to note that il'3 satisfies the
same functional equation as !fj, that is to say that the recurrence
coefficients satisfy the same Laguerre-Freud's equations given by (58)
and (59). If we denote P/I and }'/I (respectively il/l and )1/1) the three-term
recurrence coefficients associated with !fj (respectively il'3), then (13",1',,)
and (fi/l' )I,,) satisfy the system {(58), (59)} with the initial values

1- e- I

Po = 1'( 1/2; I)'

- e- I - I
Po = 2r(1/2) - }'(1/2; I);

1'(3/2; I) (l-e-\)2
1'1 = 1'(1/2; I) - y(1/2; 1)

_ 2r(3/2) - 1'(3/2; I)
Y1= 2r(1/2) - 1'( 1/2; I)

( -I I )2
- 2r(1/~)-~(1/2; I) ,
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where yea, z) is the incomplete gamma function defined by
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for Re(a) > 0

[20, p. 220].

5. A Freud Weight

~ is represented by p4(x)=exp( _x2m ) over [-c, c]; it is easy to show
that ~ satisfies

2(mx2m +1 _mc2x 2m - l _ x)~ + D[(x2- e2)~] = O.

Hence, in this case the Laguerre-Freud's equations read as

{
2{ mI2m+ I,n - me2I2m _I. n- II. n} = J 2,n- c2Jo. n

2{mK2m +I.n - mc2K2m_l.n - KI,n} = L 2,n- e2L o,n

or, using Lemmas 3.1 and 3.2 and Eqs, (34), (36)

n

2{mC~:"n+l-mc2C~:"n'-I-C~,n}=(n-l)Pn+ I Pk> n~O
k~O

2' {C2m+1 2C2m - 1 c i }Yn+I m n+l,n- mc n+I.n- n+l,n
n n

=(2n+l)Yn+I+2 L Yk+ I fJ~-c2(n+l), n~O.
k= 1 k=O

But P4(X) is an even function over a symmetric interval, then ~ is a
symmetric linear functional, hence Pn = 0 for n ~ 0 and Laguerre-Freud's
equations are reduced to

{

2(mC2m _ 1 _mc2c2m-l _ C l } = 0
n,n n,n n,n

" 2m+I 22m-I I21n +1 {mCn+1, n- me Cn+nl .n- Cn+I. n}

=(2n+l)Yn+l+ 2 I Yk- c2(n+l).
k~I

(61 )

(62)

For convenience sake, we set m = 2, Therefore, we have to compute C~. n

and C:+ 1,n for k=5, 3, and 1. C~,n and C~,n are given by (47), where we
have to equate Pn to zero, thus we have C~.n=C~.n=O, n~O.

For C~.n' we use (17) and obtain C~.n=O. Therefore Eq. (61) is a trivial
identity. Now to compute C~ + I. n and C~ + 1. n' we refer to (48), where we

640/76/3, 6
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set fln=O. We obtain C~+I,n= 1, n~O and C~+I.n=Yn+Yn+1+Yn+2'
n?-I, CtO=1'1 +Y2' For C~+l.'" we use (17) and obtain

C~+I.n=Yn(Yn-l+Yn+y,,+d+Y,,+I(Yn+Yn+1 +Yn+2)

+ I'n+ 2 ( Y" + I' " + I + Yn+ 2 + Yn+ 3 ), n ?- I

C~.O=1'l(Y\ +Y2)+1'2(1'\ +1'2+1'3)'

So, Eq. (62) becomes

41'" + I {y" (1' n- I + I'n+ 1'" + d + Yn+ 1 (y" + Y" + 1 + Y" + 2)

+Y,,+2(Yn+Y,,+1 +Yn+2+Y"+3)-C
2
(Y,,+Yn+l +Y,,+2)}

n

=(2n+3)Yn+l+2 I Yk-(n+l)c2, n~1
k~l

4yd1'l(YI +Y2)+Y2('Yt +Y2+Y3)-C2(YI +Y2)}

= 3Yl - c2

or

4y" + I { Yn(y n- 1 + Y" + Yn+ d + (Y" + 1 - c
2
)

X (yn+ Yn+ 1+ Yn+ 2) + Yn+ 2(Y" + 1'" + I + Yn+ 2+ Yn+ 3)}
n

=(2n+3)Y,,+,+2 L Yk-(n+l)c 2, n?-l
k=l

4Yd(Yl-C2)(YI +1'2)+1'2(1'1 +Y2+Y3)} =3YI-C2.

(63)

(64)

As noted by A. P. Magnus Eqs. (63) and (64) contain, as a particular
solution, a solution of Eq. (51).

Let us now take .2'4; the linear functional represented by P4 (x) =
exp(-x2m

) over ]-00; -e] V[e; +00[. Then ~ satisfies

Therefore Yn verify the Eqs. (61) and (62). If we set m = 2, and we denote
1'" (respectively }in) the coefficients of the three-term recurrence relation
associated with 2'4 (respectively 114), 1'" and y" satisfy the same Eqs. (63)
and (64) with the initial values,

y(~; c4
)

1'1=-(1.4)'
l' 4' c

(t c4
) y(~; c4

)
Y ----

2 - 1'G; c4
) yH; c4

)

_ 2F(~)-yG;c4)

1'1= F(!)-1'(Lc4) '
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_ rW-yd;c4
)

Y2= rW-ya,C4 )

2 rW-Y(L c4
)

rW - y(!, c4
)"

As we can see we exhibit two situations where Laguerre-Freud's equations
have more than one solution.
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